Seleccionar página

Inteligencia artificial para el diagnóstico de la COVID-19: análisis automático de radiografías simples de tórax

Inteligencia artificial para el diagnóstico de la COVID-19: análisis automático de radiografías simples de tórax

La pandemia por COVID-19 se ha convertido en uno de los mayores retos sanitarios en la historia reciente, habiendo ya infectado a millones de personas y poniendo al límite sistemas sanitarios de todas partes del mundo. El diagnóstico clínico de la enfermedad se realiza tras una prueba RT-PCR (o PCR), que frecuentemente se complementa con una radiografía simple de tórax. Debido a la afectación primaria del sistema respiratorio, la neumonía debido a COVID-19 puede ser observada en radiografías simples de tórax, un método que resulta ser rápido, poco invasivo, de bajo coste y que requiere de una logística muy sencilla para su realización. El análisis combinado pretende reducir el número de falsos negativos de las pruebas (su sensibilidad oscila entre el 70 y el 90%), mejorando el diagnóstico y evaluación de la enfermedad.

A la vista de lo anterior, y apoyándose en la capacidad que los sistemas basados en inteligencia artificial poseen para obtener información que incluso está oculta al ojo humano, investigadores de la Universidad de Antioquia en Colombia, la Universidad Politécnica de Madrid (UPM) en España, y la Universidad Johns Hopkins en Estados Unidos, con la coordinación del profesor Juan I. Godino-Llorente del Laboratorio de Bioingeniería y Optoelectrónica de la ETSI de Telecomunicación de la UPM, han desarrollado una prueba de concepto a mediana-gran escala de un sistema computarizado de diagnóstico de COVID-19, usando imágenes de radiografía simple de tórax.

“Desde febrero del 2020, la OMS considera la radiografía de tórax criterio diagnóstico y de evaluación de la infección por COVID-19. Las recomendaciones se basan en que la neumonía asociada produce sombras en forma de parches blancos en los pulmones, conocidas como de opacidades de vidrio esmerilado”, explica Jorge Andrés Gómez, del Laboratorio de Bioingeniería y Optoelectrónica de la ETSI de Telecomunicación de la UPM y uno de los coautores de este trabajo. “Estos patrones, sin embargo, a menudo se confunden con otros encontrados en diversas neumonías víricas y/o bacterianas, lo que dificulta el diagnóstico clínico mediante imágenes diagnósticas. Además, su análisis tiene un significativo cuello de botella debido a la necesidad de radiólogos expertos para interpretar las imágenes, y que en un contexto de presión asistencial alto debido a la pandemia puede resultar problemático”, asegura el investigador.

Para resolver este problema y favorecer el uso de la radiografía como elemento diagnóstico, los investigadores han diseñado un sistema de ayuda a la toma de decisión basado en redes neuronales y en paradigmas de aprendizaje profundo, proveyendo un diagnóstico automático, capaz de diferenciar COVID-19 de otras neumonías y de identificar las regiones afectadas por la enfermedad eficientemente.

Sobre el Autor

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

G R U M E D

G R U M E D

Orientación Médica en la Radio

Orientación Médica TV

Orientación Méd. Legal

Orientacion Medica TV